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Abstract. This paper presents cuSVM, a software package for high-speed

Support Vector Machine (SVM) training and prediction that exploits the mas-
sively parallel processing power of Graphics Processors (GPUs). cuSVM is

written in NVIDIA’s CUDA C-language GPU programming environment, in-

cludes implementations of both classification and regression, and performs
SVM training (prediction) at 13-73 (22-172) times the rate of state of the art

CPU software.

1. Introduction

Due to its impressive generalization performance on a wide range of statistical
prediction problems, the Support Vector Machine (Cortes and Vapnik, 1995) has
been, for several years now, the most widely used kernel learning algorithm; how-
ever, the computationally expensive nature of training SVMs and, to a lesser extent,
using them to predict new datapoints has limited the amount of training data that
researchers have been able to employ. Moreover, the common practice of using
cross-validation to select the SVM nuisance parameters (C, λ in classification and
C, λ, ε in regression) most suitable to a particular prediction problem compounds
the SVM’s computational cost and puts further constraints on the feasible size of
training sets. cuSVM brings the massively parallel processing power of GPUs to
bear upon this problem, and as a result, its training times on a set of benchmarks
were 12-73x faster than those of arguably the most popular CPU solver, LIBSVM
(Chang and Lin, 2001). Its performance gains in prediction, at 22-172x, were even
greater. In these tests, cuSVM was run on a NVIDIA GTX 260 GPU, which cost
only $250 at the time of writing.

Section 3 of this paper introduces the SVM, the associated Quadratic Program-
ming problem, and the modified Sequential Minimal Optimization (SMO) algorithm
used by cuSVM. Section 4 gives a brief introduction to GPUs and CUDA. Section
5 describes cuSVM’s implementation details, and finally, in section 6, cuSVM’s
performance is compared to that of LIBSVM.

2. Related Work

The two SVM training implementations most similar to cuSVM are (Cao et al.,
2006) and, especially, (Catanzaro et al., 2008). The former also improved the SMO
algorithm’s performance by exploiting its inherent parallelism but used a cluster of
CPUs synchronized with MPI (message passing interface) rather than a GPU, em-
ployed a less sophisticated working set selection method, did not include regression,
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and was not published with accompanying software. Moreover, MPI is a very dif-
ferent programming model from CUDA, and it offers much less parallel processing
power per dollar. Catanzaro et al. (2008) proved the effectiveness of implementing
the same modified SMO algorithm as is used by LIBSVM and cuSVM in CUDA but
did not implement regression. Also, their implementation1 of prediction used solely
single precision floating point arithmetic2 rather than the slightly slower yet, in
some problems, greatly more accurate mixed precision arithmetic used by cuSVM.

3. The Support Vector Machine

Given a set of training data vectors xi ∈ Rn, i = 1, ...,m, of two classes and
a label vector y such that yi ∈ {1,-1}, i = 1, ...,m, training a SVM for use in
classification (C-SVC) is equivalent to solving the following primal problem:

min
w,b,ξ

1
2wTw + C

m∑
i=1

ξi

subject to yi(wTφ(xi) + b) ≥ 1− ξi,
ξi ≥ 0, i = 1, ...,m.

The dual of which is:

min
α

1
2α

TQα− 1Tα (3.1)

subject to yTα = 0
0 ≤ αi ≤ C, i = 1, ...,m

where 1 is a vector of ones; Q is the m by m positive semidefinite kernel matrix,
Qij ≡ yiyjK(xi,xj); and K(xi,xj) ≡ φ(xi)Tφ(xj) is the kernel function, the most
popular of which is the Gaussian:

e−λ‖xi−xj‖2 . (3.2)

Once the SVM has been trained, the following function is used to classify a new
datapoint:

sign

(
m∑
i=1

yiαiK(xi,x) + b

)
. (3.3)

In the case of regression (ε-SVR) (Vapnik, 1998), given are a set training data
vectors xi ∈ Rn, i = 1, ...,m and a corresponding vector of target outputs z ∈ Rm,
zi ∈ R1. The primal is:

min
w,b,ξ,ξ∗

1
2wTw + C

m∑
i=1

ξi + C

m∑
i=1

ξ∗i

subject to wTφ(xi) + b− zi ≤ ε+ ξi,

zi − (wTφ(xi) + b) ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0, i = 1, ...,m.

1Catanzaro et al. titled their C-SVC implementation GPUSVM. It is available for download

at http://www.cs.berkeley.edu/~catanzar/GPUSVM/.
2Double precision floating point arithmetic is not supported by their test GPU, the NVIDIA

8800 GTX.

http://www.cs.berkeley.edu/~catanzar/GPUSVM/
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And, the dual is:

min
α,α∗

1
2 (α−α∗)TQ(α−α∗) + ε

m∑
i=1

(αi + α∗i ) +
m∑
i=1

zi(αi − α∗i )

subject to
m∑
i=1

(αi − α∗i ) = 0, 0 ≤ αi, α∗i ≤ C, i = 1, ...,m, (3.4)

where Qij ≡ K(xi,xj) ≡ φ(xi)Tφ(xj), and a new datapoint’s output is predicted
with the function:

m∑
i=1

(α∗i − αi)K(xi,x) + b. (3.5)

3.1. Decomposing and Solving the Quadratic Program. Specialized decom-
position methods (Fan et al., 2005; Joachims, 1999; Osuna et al., 1997; Platt, 1999)
that carefully exploit the specific nature of the SVM training problem, primarily
the sparsity of its solution, have been shown to be much more efficient than general
purpose quadratic programming solvers, which require the precomputation of the
full kernel matrix. Moreover, decomposition becomes a necessity as the number of
training examples grows: the full kernel matrix quickly grows too large to fit in the
memory of a reasonably priced computer.

cuSVM employs a modified version of the SMO (Platt, 1999) algorithm. SMO
takes decomposition to its extreme by sequentially solving a series of quadratic
programming subproblems of only two elements. The modification is the use of
the second-order working set selection heuristic introduced in (Fan et al., 2005)
and subsequently incorporated into LIBSVM’s solver. Compared to its less so-
phisticated first-order predecessor (Keerthi et al., 2001), the second-order heuristic
generally significantly reduces and almost never significantly increases (Catanzaro
et al., 2008; Fan et al., 2005) the number of iterations necessary to solve (3.1), and
while its computation is slightly more expensive per iteration, the significance of
this added cost declines precipitously as the number of training examples grows.
As the portion of the kernel matrix that can be cached decreases, the calculation
of the rows of the kernel matrix corresponding to the two elements in the working
set increasingly dominates the per-iteration cost.

Briefly, the modified SMO algorithm implemented in cuSVM is the following:

Algorithm 1 (A Modified SMO Decomposition Method)
1. Initialize α1 =0, the iteration counter r = 1, and the Karush-Kuhn-Tucker

(KKT) optimality conditions vector:

f1
i =

m∑
j=1

yjα
1
jK(xi,xj)− yi = −yi.

2. End algorithm if the stopping criterion (3.7) has been met, otherwise use
the second-order heuristic (3.8, 3.9) to find the two working set indices ihigh
and ilow

3.
3. Update αrilow

and αrihigh
to αr+1

ilow
and αr+1

ihigh
using the computationally in-

significant yet rather involved process described in (Chang and Lin, 2001).

3The iteration counter r is omitted from ihigh, ilow, Iup, Idown, bhighstop, and blowstop for

simplicity of notation.
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4. Update the KKT conditions vector (the algorithm’s most expensive step):

fr+1
i = fri + (αr+1

ilow
− αrilow

)yilow
K(xilow

,xi) + (αr+1
ihigh

− αrihigh
)yihigh

K(xihigh
,xi)
(3.6)

5. Set r ← r + 1. Go to Step 2.
In order to solve the regression dual (3.4) with Algorithm 1, cuSVM performs the
reformulation found in (Chang and Lin, 2001).

3.1.1. Stopping Criterion. First define two index sets:

Iup = {i : 0 < αi < C} ∪ {i : yi > 0, αi = 0} ∪ {i : yi < 0, αi = C}
Idown = {i : 0 < αi < C} ∪ {i : yi > 0, αi = C} ∪ {i : yi < 0, αi = 0}

Algorithm 1 is deemed to have converged when

bhighstop − blowstop ≤ τ (3.7)

where

bhighstop = max
i∈Iup

−yifri

blowstop = min
i∈Idown

−yifri .

The offset b in (3.3) and (3.5) is then calculated as

b =
bhighstop + blowstop

2

3.1.2. Second Order Working Set Selection (Fan et al., 2005).
1. Select:

ihigh ∈ arg max
i∈Iup

−yifri (3.8)

2. Define qi ≡ −yihigh
frihigh

+ yif
r
i > 0. Select:

ilow ∈ arg min
i∈Idown

{−q
2
i

ψi
| − yifri < −yihigh

frihigh
} (3.9)

where

ψi =

{
K(xi,xi) +K(xihigh

,xihigh
)− 2K(xi,xihigh

), xi 6= xihigh

τ, otherwise.
(3.10)

4. Graphics Processors and CUDA

Graphics Processor architectures are optimized for rendering real-time graphics,
a highly compute and memory intensive problem domain with enormous inherent
parallelism; thus, relative to a CPU, a much larger portion of a GPU’s resources is
devoted to data processing than to caching or control flow.

A consequence of GPU architectures’ deemphasis of caching and control flow is
the near impossibility, in most applications, of achieving their peak floating point
operation rate; however, in order to realize large performance gains versus a CPU,
it is often sufficient to reach only a fraction of this rate. This size of this fraction
is determined primarily by the degree of parallelism that can be uncovered in the
desired application.

CUDA, which stands for Compute Unified Device Architecture, is NVIDIA’s
GPU programming environment. The CUDA programming model consists of both
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host and device functions. The former are written in nearly standard C/C++,
executed on the CPU, and used to call the latter, which are written in annotated C4

and executed on the GPU, in order to accelerate highly parallel and computationally
intensive tasks.

5. Implementation Details

5.1. Kernel Evaluation. The root of cuSVM’s training performance advantage
over CPU-based solvers such as LIBSVM is the parallelism that can be exposed in
the most computationally intensive part of the modified SMO training algorithm,
the calculation of the two rows of the kernel matrix corresponding to the indices
in the working set. The row corresponding to ihigh is used by the second order
working set selection heuristic (3.9), and both are necessary for the update of the
KKT conditions (3.6). As is noted in (Catanzaro et al., 2008), −λ ‖x− y‖2 from
the Gaussian kernel (3.2) can be expressed in terms of matrix-vector multiplication
as λ(2x·y−x·x−y·y). Before initiating Algorithm 1, cuSVM computes on the CPU
xi ·xi, i = 1, ...,m, and transfers the result to GPU memory. Then, during training
iterations, cuSVM uses NVIDIA’s CUDA basic linear algebra library, CUBLAS, to
compute the necessary x · y and a GPU helper function to subtract (x · x + y · y),
multiply by λ, and exponentiate.

cuSVM’s algorithm for batch computation of the kernel matrix needed for the
prediction of new datapoints is the result of modifying Volkov’s highly optimized
CUDA matrix multiplication algorithm (Volkov and Demmel, 2008) so that each
operation computes 2xiyi−x2

i −y2
i rather than xiyi and, in each entry of the output

matrix,
∑n
i=1 2xiyi− x2

i − y2
i , where n is the number of features, is multiplied by λ

and exponentiated.

5.2. Mixed Precision Floating Point Arithmetic. In prediction, the batch-
computed kernel matrix must be multiplied by either the vector yα (element by
element multiplication), in C-SVC (3.3), or the vector (α−α∗), in ε-SVR (3.5). The
author found, contrary to what is reported in (Catanzaro et al., 2008), that when
there are many support vectors and only single precision floating point arithmetic
is used, rounding error can cause the accumulation of these dot products to go
catastrophically wrong; thus, cuSVM uses a mixed precision approach where the
scalar dot product accumulator is stored in double precision. This limited use of
double precision arithmetic has a small performance penalty and means that cuSVM
is only compatible with relatively newly released NVIDIA GPUs; however, these
costs seems merited when one considers that in the Forest prediction benchmark
the accuracy rate obtained with a strictly single precision version of the cuSVM
prediction algorithm, 56.87%5, was drastically lower than the 80.05% rate (Table
6.5) obtained with either the same single precision cuSVM-trained SVM coefficients
and the mixed precision cuSVM prediction algorithm or double precision LIBSVM-
trained SVM coefficients and the double precision LIBSVM prediction algorithm.
Finally, cuSVM uses a mixed precision rather than a fully double precision approach
because the author has found no evidence that there are significant risks to using
strictly single precision arithmetic in either training or the batch computation of

4Some C++ features are available
5The single precision version’s accuracy rates on all other benchmarks in Tables 6.5 and 6.6

were very similar to those obtained by mixed precision cuSVM or LIBSVM
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the predictive kernel matrix and thus the performance penalty that would come
with the switch to full double precision seems unmerited.

5.3. Kernel Caching. The probability that an index will be selected for the work-
ing set given that it has recently been selected is much higher than the uncondi-
tional probability (Zhao et al., 2007); thus, many expensive kernel evaluations can
be avoided by caching (Joachims, 1999) recently used rows of the kernel matrix.
cuSVM caches the kernel rows of recently selected indices in GPU memory, and
during each iteration, the CPU checks to see whether the needed kernel rows are
in the cache. If not, the CPU instructs the GPU to compute the necessary row(s).
If the cache is full, the least recently used row(s) is (are) overwritten.

5.4. Parallel Reduction. CUDA’s strict constraints on communication and syn-
chronization among blocks of processing threads make the implementation of reduc-
tion operations such as finding the maximum or sum of a vector nontrivial. Harris
(2008) presents several effective techniques for parallelizing and optimizing reduc-
tions in CUDA, all of which cuSVM employs in its algorithms for finding bhighstop,
blowstop, ilow, and ilow. The cuSVM GPU reduction functions check for member-
ship in the appropriate index set (3.7) and either calculate −yifri in the cases of
bhighstop, blowstop, and ihigh or −q

2
i

ψi in the case of ilow. Their output is a vector
of 64 candidate values–and in working set selection, accompanying indices–which
are copied to CPU memory where the CPU performs a final sequential reduction.
This transfer is motivated by the CPU’s large efficiency advantage over the GPU
in performing very small reductions.

6. Results

6.1. Training. cuSVM’s performance is compared to that of LIBSVM. cuSVM
only supports the widely-used Gaussian kernel function, so this kernel was employed
in all tests. The C-SVC (ε-SVR) tests were run on the datasets detailed in Table
6.1 (6.2). These tables also contain the hyperparameter values used.

Table 6.1. C-SVC Datasets and Parameter Values

Name C γ # Points # Features % Non-Zero

Adult (Asuncion and Newman, 2007) 100 0.5 32,561 123 11.3
Web (Platt, 1999) 64 7.8125 49,749 300 3.9
MNIST (LeCun et al., 1998) 10 0.125 60,000 784 19.1
Forest (Asuncion and Newman, 2007) 10 0.125 561,012 54 22.1

Table 6.2. ε-SVR Datasets and Parameter Values

Name C γ ε # Points # Features % Non-Zero

Adult (Asuncion and Newman, 2007) 100 0.5 0.5 32,561 123 11.3
Web (Platt, 1999) 64 7.8125 0.5 49,749 300 3.9
MNIST (LeCun et al., 1998) 10 0.125 0.5 60,000 784 19.1
KDDCup98 (Hettich and Bay, 2007) 2−7 13.6436 0.01 95,241 403 82.6

Adult, Web, and MNIST were used in both the C-SVC and ε-SVR tests. In
the latter case, the learning goal is simply that the continuously valued prediction
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of a datapoint be as close as possible to its label (either 1 or -1). KDDCup98 is a
traditional regression problem.

LIBSVM was run on an Intel Core 2 Duo 2.66 GHz processor and given a cache
size of 700MB, which is slightly larger than that allowed cuSVM. The same PC,
which features a NVIDIA GTX260 GPU, was also used for cuSVM’s benchmarks.
The stopping criterion, τ , was set to 0.001 for both solvers. Lastly, neither solver’s
times include file I/O, and cuSVM’s times include all data transfers between CPU
and GPU memory.

Tables 6.3 and 6.4 show that, on these benchmarks, cuSVM converged to solu-
tions that were practically the same, in terms of either b or the number of support
vectors, as those obtained by LIBSVM in dramatically less time than was needed by
the CPU solver. In training on the same dataset, cuSVM’s speedup ratios were very
similar regardless of whether the objective was classification or regression. Also,
as expected given that cuSVM’s matrix storage format is dense while LIBSVM’s is
sparse, cuSVM performed particularly well relative to LIBSVM on the densest of
the benchmark datasets, KDDCup98.

Table 6.3. C-SVC Training Results

Dataset
# Support Vectors Abs Difference Training Time (s)

Speedup (x)
cuSVM LIBSVM in b cuSVM LIBSVM

Adult 18,676 19,059 2.8×10−6 31.6 541.2 17.1
Web 35,220 35,231 2.6×10−4 228.3 2,906.8 12.7
MNIST 43,751 43,754 2.0×10−7 498.9 17,267.0 34.6
Forest 270,305 270,304 8.0×10−3 2,016.4 29,494.3 14.1

Table 6.4. ε-SVR Training Results

Dataset
# Support Vectors Abs Difference Training Time (s)

Speedup (x)
cuSVM LIBSVM in b cuSVM LIBSVM

Adult 18,670 19,079 8.0×10−7 31.6 548.8 17.4
Web 35,220 35,307 3.8×10−4 230.8 3,280.9 14.2
MNIST 43,729 43,732 8.6×10−5 465.9 16,499.0 35.4
KDDCup98 42,284 42,104 4.2×10−4 254.9 18,519.2 72.6

6.2. Prediction. cuSVM’s speed and accuracy in prediction are compared to LIB-
SVM’s in Tables 6.5 and 6.6. cuSVM’s predictions were made using cuSVM-trained
SVMs and LIBSVM’s were made using LIBSVM-trained SVMs. 10,000 datapoints
were randomly selected from each training dataset for use in these tests. The fact
that these datapoints were in-sample is irrelevant given that the purpose is simply
to assess cuSVM’s numerical accuracy.

In no test, whether C-SVC or ε-SVR, was cuSVM’s predictive accuracy signif-
icantly less than LIBSVM’s, and here cuSVM’s speedups, at 22-172x, were even
greater than in training. However, it is important to note that LIBSVM is not an
especially optimized CPU classifier and thus not all of these performance gains are
attributable to the GPU. Catanzaro et al. (2008) built a CPU classifier based on
Intel Math Kernel Library BLAS routines that was 3.4-28.3x as fast as LIBSVM.
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Table 6.5. C-SVC Prediction Results

Dataset
Prediction Time (s)

Speedup (x)Accuracy (%) 10,000 Points
cuSVM LIBSVM cuSVM LIBSVM

Adult 95.59 95.59 0.6 31.7 55.9
Web 97.43 97.43 2.7 58.8 22.2
MNIST 100.00 100.00 8.4 764.5 91.5
Forest 80.05 80.05 5.5 278.4 50.7

Table 6.6. ε-SVR Prediction Results

Dataset
Prediction Time (s)

Speedup (x)Accuracy (MSE) 10,000 Points
cuSVM LIBSVM cuSVM LIBSVM

Adult 0.2943 0.2943 0.6 31.7 55.9
Web 0.3015 0.3013 2.7 59.0 22.2
MNIST 0.2208 0.2208 8.4 706.4 84.3
KDDCup98 0.0004 0.0004 4.3 732.3 172.0

7. Conclusion

With cuSVM, it is now practical, on a retail desktop, to apply SVM classification
and regression on a whole new range of problem sizes. All that is required is an
inexpensive GPU. Moreover, cuSVM features a Matlab MEX wrapper that allows
users to access the GPU’s massively parallel processing power without having to
perform any “real” programming.
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